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A BAYESIAN APPROACH TO

SOME BEST POPULATION PROBLEMS

Irwin Guttman and George C. Tiao

I. Introduction and Summary

There have been several papers recently in the literature devoted

to the subject of selecting a "best" population -- see for example Gupta

and Sobel (1962), Guttman (1961) and others. In these works, the problem

was analyzed from the sampling theory point of view. Except for some

simple cases, this approach frequently leads to the problem of eliminating

nuisance parameters. And, unless rather strong assumptions about certain

of the parameters involved are made, the problem usually becomes intractable.

In this paper, we consider certain best population problems adopting

a Bayesian approach. One main advantage of such an approach is that we

are able to arrive at satisfactory decision procedures in the presence of

nuisance parameters. Indeed, the use of Bayes' theorem allows one to

analyse best population problems from many points of view. The plan of

this paper is as follows:

In section 2, a general description of best population problems

is first outlined. The criterion for "bestness" is regarded as a "utility"

function of the statistician. The decision procedure then adopted is

based upon the principle of maximizing posterior expected utility. In

sections 3 and 4, we discuss the application of this procedure when sampling

from normal populations and exponential populations, respectively. In both

cases, the criterion defining the best population is taken to be the

coverage of the population considered in a certain given interval. The

procedures are shown in section 5 to be consistent. Further, in section 6,

we extend the decision analysis by considering the posterior distribution
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of the criterion. This extension enables us to propose other decision

procedures which may be more appropriate in certain situations than that

resulting from the principle of maximizing posterior expected utility. Some

examples are illustrated in detail. Finally, in section 7. we discuss

briefly some different types of best population problems.

U1. Statement of the Problem

We are given a collection 9 of k populations nl, i29"s Bi.. Rk

in which there exists a so-called "best" population, where the population

is "best" according to a specific definition of the following kind.

Suppose the ni's are distributed with probability density function

f(xI i) , where e1 is possibly vector-valued. Consider a real valued function

of Oi, hi = g(0i), where g is known. Then the "best" population is defined

to be that population which has largest value among the hi = g(e i ) ,

i = 1, ... , k. We assume there is an ordering of the hi, ..., hk into

h h ... h
I1) [2J [k-l [k]

As we are interested in determining which of the k populations has

as its value of h, the value h k], and in accordance with the Bayesian

approach, we may therefore regard the function hi Z g( 1i) as the utility

function of the statistician re the population Ri. The statistician's

procedure will be as follows:

From each of the Hi select a random sample yi of size ni . Determine

the a poeteriori distribution p(eilyi) of ei given the sample and hence

find E(hilyi), the expectation of hi, i = 1, ... , k. The statistician will

then choose as the "best" population that population which assumes the

maximum value of these expectations. That is, the one with value
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max E(hi.1) . max f hi p(GlLi) dei
I L

In sections 3 and 4, we apply this approach to two particular

cases. We define h i a g(e i ) j2 f(xO i) dx, where a and a 2 are known,
11 2

and consider the cases:

(a) f is the normal density, and

(b) f is the exponential density.

This problem with hi defined as above, has been considered by Guttman

(1961) from the non-Bayesian point of view. We note that several of the

more interesting cases which lead to considerable mathematical difficulties

when the non-Bayesian approach is used are readily solvable adopting the

above-mentioned procedure (see below).

III. The Case of the Normal Density

When the populations Iti are normally distributed, we have that

a2  2

ah gJJil U exp{ (Y-i) 2 dy.
a i a

iiLet a sample yi - (Yil, '' i i be taken from HI . We have for the

likelihood function:

,(A,. a i i,) . n i exp "1 ij " )2 }
i 2a02 Al 1

i

(3.1)

aC-i .p 2o n i G Ii2

where i and a2i are the maximum likelihood estimators of gi and 2

respectively.



4.

Assume that we are in a situation where little is known a priori

re the values of (p,, a,), for all i. In other words, we are saying that

the information we have re (pit a comes primarily from the sample y,.

We may then adopt the approach used by Jeffreys (1961), Savage (1961),

and Box and Tiao (1962), and assume that Ai and log a, are independent

and locally uniformly distributed a priori. That is,

(3.2) p(log ai) k or p(oi) -

2i

all i.

Using (3.2), the Joint posterior distribution of (pi, ai) is:

(3.3) P(Aij i-£ )  P, P(ail si ) P2(pilci.'di

where 2 n 1- 2

(3.4a) p ( 2 1 a}-i exp { is .Li

i
and

(3.4b) p ' (A -y 4 exp -) - 2i)

L 2ni

We note from (3.3) that the adoption of the prior distributions (3.2)

amounts to saying that the joint posterior distribution of p. and log a,

is approximated by the likelihood function (3.1).

Consider first the case where al-a*. Then, the a posteriori

expectation of hi is
um

E(h ly-i) h /'i P (a Is,) P2(11I iy Ci ) do i dgi

-~0
"a 2

dz do i dgi.
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It is clear that we may reverse the order of integration. On integrating

out oi and p. we obtain

:L.1 a2 -.. 2 ni

r)r(2 )-ni+l)

That is, we have the following remarkably simple result

(3.6) E(hiI,±) -Fn 1 (ti)

where F is the cumulative distribution function of the Student-t variable

with (n -1) degrees of freedom ind t i = (in2i

Similarly, if al is finite, we find that

(3.7) E(hiIx) - F ()1 t 2  - Fn. ,

where F is, as before, the Student-t cumulative distribution with (ni-l)

degrees of freedom and

(3.8) t , t (2). ' t ' 1- ( i

The statistician's procedure is now clear. If one behaves as

a maximizer of his expected utility -- see for example Luce and Raiffa

(1957), and Raiffa and Schlaifer (1961), he computes the expectations

(3.6) or (3.7) depending on whether a1 = -, or a1 is finite, respectively,

for each population. He then chooses as the best population the one with

the sample giving the maximum value of these expectations.

In the case where a1 = -a (this will be called the one-sided case),

we note that if ni w n, all i, then this selection procedure is equivalent
a2o cto choosing the population which has as value of - , the value
si
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max . This is an intuitively pleasing result for the following

reason. We are interested in the best population, that is, the population

which has largest value of

h (~ )=-J'. 2x {- 2 d

and since this is a monotone increasing function of the upper limit, say

i a-i

intuitively evident that an estimate of should be based on and
a 2 ~s i

hence, that the largest value of -"Y should be indicative of the best

si

population.

IV. The Case of the Exponential Density

In this section we discuss the situation in which the populations

Hi have exponential distributions. That is, their probability density

functions f(Ye 1 ) take the form:

(4.1) f(yliji, ol) - a  e~p { (- Y- i

o otherwise.

We take up the one-sided case first, namely, we let a2 = a, and a1 =-.

Then, hi becomes

a
(4.2) hi - a i a i) =ff(yI~i, at ) dy.

Let a sample yt of size ni be taken from H i = 1, ... , k, and the

observations insz be ordered, that is we let f = the "" limi ) where

e ii 2

herce, tha the lags vaui e of Thsiklhod funcatsiveno h by st

popultioi
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(4.3) 1 )up zi P
ia J.1 (Yj 41

= Cy r i exp {. ~ (n 1-I) v i + n i(yil"4di]}
ni

where wi - (n±-l)1 JE2 (yij-Yil).

It is to be noted that for all a i > 0 the likelihood function (4.3)

is a monotonic increasing function of pi in the interval (-m, Yil ) and

vanishes outside this interval. Two interesting cases may now arise,

namely, (1) yil < a, and (2) yil > a.

For a given population 1i. suppose case (I) occurs. This implies

that pi < a and hence (4.2) becomes

(4.4) hi 1 - exp {- a-}

As in section 3, we assume that the prior distributions for ji and

log ai are locally uniform. The Joint posterior distribution of gi and Gi

then takes the form:

(4.5) P(gi' ailxi) p3 (ailwi) P4(pil1 i' yild

where {(ni l)wi} (ni-l)

(4.6a) p3(1ilw7 ) = ani exp[ (n i-)wi 'a > 0

and n'h
(4.6b) p(ioYl= exp _i (Yil'gi) P, < Yii"

Hence, the expected utility is:

-y 0

(4.7)
= 1 - n + a'Yil (ni-

ni1+1 (n i' )w i T
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We again note that this result (4.7) is intuitively pleasing.

To begin with, we are interested in the population with largest value of
&-Ai

hi as given in (4.4), which is a monotone increasing function of
a-li i

Hence, the population with largest value of - is the best population.ai

It seems natural, therefore, that a selection procedure for the best

population should be based on -i . In the special case ni * n, this
w i

leads us to choose that population which yields the sample with largest

value of - . The above reasoning is borne out in expression (4.7),
i  a *Y l

since it is a monotonic increasing function of w.

Suppose now that for a population Ili, case (2) ariscs, then there

is no information from the sample to tell us which of the situations

(i) a < ii or (ii) p, < a obtains. If, in fact, our prior information

includes the knowledge that a < i, then the utility for that population

is zero and this population should be dropped from further consideration.

On the other hand, suppose that a priori little is known about gis

except that it cannot exceed "a", and hence the utility hi is again given

by (4.4). As before, one can approximate the posterior distribution of Ai

and log oi by the likelihood function, but with the extra restriction

41 < a. We then have for the joint posterior distribution of gi and ai,

(4.8) p(i , 0±llI) ' p5(ViJai, a) p6(ailyi, a)

where

(4.9a) p.5(iloi, a) - n exp { - (a-'i)} , i < a,
ai

and
[ n, (j,-a)) (ni" I) -nn i(i-a)

(4.9b) p6(oiYi, a)= -(ni ) i i exp a- i i
i r(ni -

with y - Zi
i ni J=l Yij-
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Using (4.8) we find that the expected utility is simply

(4.10) E(hl _ iL .

We note that the expected utility in (4.10) approaches zero as n

tends to infinity. This is as it should be for here AL < a < yil' and

therefore, as ni -W a, Yil converges (in probability) to pi with the result

that the utility (4.4) must approach zero. This has an interesting

implication; when a < y l and for a large sample, we have that the posterior

expectation for our utility is either approximately (if ji < a) or

exactly (if a < Ai) zero. Thus, for a large sample, irrespective of whether

or not we know that i is greater or less than "a", the population I i should

be dropped from further consideration.

Further, suppose the sample sizes are small and that the inter-

mediate situation occurs, that is, yil < a for some of the IIi and a < Yi,

for the remaining ones. In the event that ni a n, all i, the expression

in (4.10) is always less than that in (4.7). The statistician's procedure

is then clear -- he will immediately drop from further consideration those

populations with a < yi, and select the best population from the remaining

ones.

We now consider the "two-sided" case for the exponential, that is,

we will be interested in the population having largest value among the

quantities:

a2

(4.11) hi ag(i, o)='2 exp{- (x-gi)} dx
a1  j. ,-

where a1 and a 2 are known constants.

For a given population Hi. we shall only be concerned with the

following two cases:
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(4.12a) Pi < Y il < a 1 < a 20 and

(4.12b) 9i < a1 
< yil< a2"

Paralleling the above development, we find that the expected

utilities are

(4.13) E(hii n [ {+ }Iyi -) {l + (n-1I)}-(ni-I)]
il-) - ni- )w i- (n i' )w i

under (4.12a), and

(4.14) 9(hitli) - n 1 n i2ial-(

when (4.12b) holds.

For the two-sided case, the procedure will be: Upon taking a

sample of size ni from each of the li, compute the expectation in (4.13)

or (4.14) according to whether condition (4.12a) or (4.12b) obtains. Then

choose as the best population the one which has the largest expectation.

V. Consistency Properties of the Procedure

We show in this section that the procedures developed in

sections 3 and 4 have a very interesting property, namely that of con-

sistency.

Consider first sampling from normal populations (section 3). For

the two-sided case, the a posteriori expectation of the utility hi is

given by (3.7). This is the area between ti() and under a Student-t

distribution with (ni-i) degrees of freedom. As ni tends to infinity, we

see from (3.7) and (3.8) that this expectation approaches the value

As in the one-sided case, we are assuming here that we have a
priori information that g, is less than a .
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(5.1) lim E(hilx.)=J k2 e dt

n 
1

ni - 1- 1

Si

where, of course, j, and ai are the observed values of the mean and

standard deviation of an infinitely large sample.

From the posterior distribution p(jL,, aily) in (3.3), it is

straightforward to verify that the second moment of hi is:

2 ~ (2) (2) n +12

(5.2) Ejh211 1 1+ Jl+7- 7 72 2 dydE(hiI±) 2s(l-p I) 4tci ) L1  (ni'l)(l-di)

-i i

with pi - n1 +1

The expression in (5.2) is a bivariate t-integral -- see Dunnett

and Sobel (1954). As ni - ', Pi will tend to zero and the above integral

approaches the following limit:

a 50

(5.3) lir E(hIi) -21X exp { (t2+u2) dt du

s i

which is of course the square of (5.1). That is to say, in the limit the

variance of hi approaches zero. Thus, we have the important result that

the utility hi converges (in probability) to the value (5.1). Since the

best .population is the one with the largest value of the quantities in (5.1),

i - 1, ..., k, our procedures described in section 3 insures that for large

samples the- best population will always be chosen. It will be seen that

this large sample property also holds for the one-sided case, i.e. with

a1 M.

Turning to sampling from the exponential (section 4), we nov

demonstrate the consistency property for the one-sided problem when yil is less
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than "a". Here, the utility hi is given in (4,4). It is straightforward

to verify that the rth moment of h is

() ~ r r £(1\r+Si~ (~li~ aY i. i = n nO i

where we recall that yil is the first order statistic of the sample Y and

wI - nij= (Yij _ yil ). In particular, by setting r = 1 and r = 2,

we have that:
n,[1 a'Yl ]'(ni'l)

(5.5a) E(h il 1) = I n (n i- l)wi

and

(ix) L[+ 2(a-y id-(n i-1) (ni) 2 [ aiyj -(n-l)
(5.5b) Vat (hls) 1 n l +  :(-"-])7(i' " n  1+ ay:l,.-

hi n+2 (n- lwJ "\n +--1 (n- lwiJ

The expression (5.5a) is of course the expected utility as given in (4.7).

Now, as ni -. a, the expressions (5.5a) and (5.5b) tend to, respectively,

(5.6a) lim E(hi,) = I - exp {- YLl }
n,-. w wi

and

(5.6b) lim Var (hI) 0.

In a similar way one can show for the other cases discussed in section 4

that the utility functions involved are such that they converge in

probability to finite limits.

VI. Distribution Theory of the Utilities h. =. l.

Since the utility hi is a function of 9i, then once we have the

posterior distribution of 9, we can, in principle at least, determine

the posterior distribution of h It is important to study this distribution,
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since it provides all the relevant information about hi. In this section,

the posterior distribution of h is illustrated for the one-sided cases

of sampling from both normal and exponential populations.

For the normal, the Joint posterior distribution of gi and Oi

is given by (3.3). We now make the transformation

hi J27o) exp {.j}dt a 0 C

(6.1I) -" -

Vi ais

where 0 is the cumulative distribution function of the standard normal

variable.

The absolute value of the Jacobian J of the transformation (6.1)

is easily seen to be -iven by

r( .I ) 2

Using (6.1) and (6.2), and upon inteerating over the range of vi we

find that the (mar&inal) posterior distribution of hi is:
2 2 2 2

(6.3) p(hilni) ! ep n(s +b b m 2

(6.3) pc4 exp Ok - : } n-2 exp L L (t+ i  f dt
Ls- 42a2+b 2 2*22 ,

where n -3 n ~ n -1
-l - n- U--

k4  = 2 2 r ( - n 2 ) 2 2

ISi -1  (hi) and bi Y a a2"

Since mL is an inverse function of a cumulative normal, it is

not possible to express the density in (6.3) in a closed form. Nevertheless,

it is easy to show that this density can be put into the alternative form:
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(6.4) p(hi.j)= k4 v'2 expf" -in i2  n]2  ]
n s- 3 +b

2 2 n -2 n -2 n
ln(s +b2)] 2 ( )(-2) T(c)

i i 10 pO p p

where

00 2 4 Tbm

Tp(cfi) 'p a e' ay, fndyc
q 2 .

- c i  s i + bi

The function Tp(c i) may be calculated using the following reduction

formulae,

p = 2r +1: T (c) = 2 r V'(c) z . (1)

(6.5) 2 J-j(r- ) .) r
p = 2r: Tp(c) = 2 (rJ! V(c) z Ip 1= 1

p 2r (r4)! 4(c)
+- 2 r(r' )! [I - c]

Thus, making use of an electronic computer, and consulting those

standard normal tables which would permit accurate inverse interpolation,

we would be able to calculate the density p(h ixy-). Once this is calculated,

the posterior probability integrals can then be approximated using star,',-Zd

numerical methods, for example, Simpson's Rule, etc.

For the exponential distribution as defined by (4.1), we have

found that, when yil is less than "a", the posterior distribution of Pi

and ai is given by expression (4.5). We now make the transformation

hi = c(gi.L ai) = 1 - exp "f W

(6.6) h 
i

v i = a t

*i i
An equivalent form of this reduction formula is given ii Iilhcr

(1961).
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The absolute value of the Jacobian of the transformation (6.5)

is 1JJ -b . Thus, the (marginal) posterior distribution of hi is

given by

nt (ni -l)w] ni -

(6.7) p(h -d r L- 1 (1-hb fvi exp dv()

where

G(i) =" log (1-hi)

For values of "a" different from and upon making the transformation

x = n(Y- a) v-1, the integral in (6.7) can be written:

(6.8) -n a)] (n ) x i  e dxS- • "Id

0
with

di n i a)
i = oc(hi) I

On integrating by parts, (6.8) takes the form

(6.9) (ni-2)! niYia)] 1 - exp(-dn )  -2

Using (6.9) we then have the alternative form for the posterior ditrI't,ion

of hi,

(610 p(hilxi ni-i i" !
[6.10)wi1bi-l (l-hi {- exp(-d ) !
n i-iL a).

From (6.10) it is easily shown that the posterior probability

(6.11) Pr(hi > hioly i) =

1)w ln~ -1 ni~ ay r 1 ~ r u Fn 4(~) 1 -~_,l' ~~ i a yL r 2o, • io 4,.!'-a, -.
n(y ~a)] (1-hi 0 ) - (niul)wi -ioU r0 v- Iv". L". - J

(n -Olwi
where u1 , io " (h io ) We note that expressions (6.10) and (6.11) aie

amenable to calculation.
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As an example of the resulting posterior distribution for the

exponential case discussed above, three samples of size ten each from

exponential populations with (i, ai) - (0, 1), (.1, 1.1), and (.2, 1.2)

were drawn. The sample information is smnarized as follows:

Sample No. I

Yil .0316 .2286 .5799

w .9238 .9744 1.136

ii .8630 1.106 1.602

The value of "a" chosen is 1.20. The resulting posterior distributions

are plotted in Figure 6.1.

We see from the diagrams that the posterior distribution for

population 3 is nearly symmetric. However, the posterior distributions

for populations i and 2 are skewed, the former being more so in this

respect than the latter.

In fact, on examining the moments of hi given in (5.4), it is

evident that we should expect some skewness of the above type. It is

for this reason that a desire for a "conservative" decision rule might

make itself felt. For example, we might find that the situation depicted

in Figure 6.2 might obtain.

Here we have found that the expected values of hi (i = 1, 2) are

nearly the same, yet as we are interested in picking the best population,

that is, the population with the largest value of hi, we are inclined to

favor population 1 since the a posteriori probability of h exceeding

its expected value is obviously larger than the a posteriori probability

of h2 exceeding this value. This leads us to propose the following

procedure which may be favored by some experimenters. namely,
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(i) As in sections 3 and 4, find max E(hiliy). Let this value

be denoted by yo.

(ii) Determine the a posteriori probability that hi exceeds the

quantity 70 , say Pi, for each population. Hake the decision that the

population having as its value of P, the value max Pis is the best population.
i

Other procedures of this type suggest itself at this point. For

example, suppose the statistician is concerned with a mass production

process in which items are defined to be non-defective if, re a certain

specification, they measure less than the quantity 'a". Then obviously,

among k processes producing this item, the statistician wishes to choose

the process yielding the largest proportion of items which measure less

than "a". Further, suppose that the processes are costly and that the

break even point is accomplished if and only if the proportion of non-

defectives is greater than a known percentage, say 100 y%. Then one would

expect the statistician to choose as the best population the one having

largest value for the posteriori probability Pi = Pr [hi > 7tY] .* In

fact, statisticians may be faced with situations which would call for rules

of this type but using different choices of y. The value of 7 chosen

would depend entirely on the particular problem involved.

We remark that knowledge of the posterior distribution has

enabled us to arrive at the decision rules of the types described in this

section. It seems to us entirely natural to base our decision upon the

posterior distribution, in preference to the rules exemplified by

sections 3 and 4, which are based on maximizing the expected value

We are indebted to Professor David Finney (1962) for this
remark.
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E(hiIy.). For, after all, the posterior distribution gives us all the

information about hi including its expected value. Of course, because of

the consistency property of the procedures of sectioW3 and 4 (as shown in

section 5), we recommend that the procedures of this section be used only

for small samples.

VII. Some Other Best Population Problems

The problems discussed in sections 3 and 4 involved "utility"

functions hi - (6i) which are rather complicated functions of the

population parameters. The analysis used in these two sections was that

dictated by the general framework described in section 2. Using the sae

approach, we turn now to some other best population problems where the

definitions of "best" used, involve hi which are simple functions of either

a location or a scale parameter of the population distributions. The

specific hi and their expectations are summarized in Table 7.1.

Table 7.1

Utility Expected Utility When Sampling From

2_ 2o i  1

i 2 i 1 ( i iJ i i
i

Yi n (ni - 2) n i + Ai + Int

n,/2 r( )

a fni r I r)  .

Prior p I k p(;) a k p(I)= r(fr"-2

Distri- I ( i r(m i
but ions I

Of Pi () at i i
Pa-..j i a i 0 i (-i
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These types of best population problems summarized above have

been considered from the non-Bayesian point of view -- see Gupta and

Sobel (1960, 1962) Bechhofer (1954), and Bechhofer and Sobel (1954) --

and from the Bayesian point of view by Raiffa and Schlaifer (1961). It

is easy to show that the results listed in Table 7.1 are consistent.

Also, these problems can of course be treated using the analysis discussed

in section 6.
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